The Frequency and Management of TP53 Mutation Carriers in Turkish Patients with BRCA-Negative Breast Cancer Under 50 Years of Age

OBJECTIVE
Germline mutations in the TP53 gene cause Li-Fraumeni Syndrome (LFS). Breast cancer (BC) is the most common cancer that is seen in young women with LFS. The majority of BC in LFS occurs between 15 and 44 age of years. The present study aims to determine the frequency of TP53 gene germline mutation carriers in Turkish patients with BRCA-negative BC under 50 years of age as the first study from Turkey, to our knowledge, and to emphasize the importance of management in TP53 gene mutation carriers.

METHODS
One hundred patients with BRCA-negative BC younger than 50 years old were evaluated concerning mutations in the TP53 gene between 2016 and 2017 years. Sequencing analysis using targeted next-generation sequencing (NGS) and deletion/duplication analysis using multiplex ligation-dependent probe amplification (MLPA) method were performed in TP53 gene in all patients.

RESULTS
Five variants were identified in five of 100 patients (5%) in this study. Four of them were evaluated as known as pathogenic/likely pathogenic (4%; 4/100). One variant was evaluated as a variant of uncertain clinical significance (VUS).

CONCLUSION
The patients with BRCA-negative BC younger than 50 years old should be evaluated concerning TP53 gene mutations because of increased lifetime risk of various developing cancer. Appropriate genetic counseling should be given to patients with TP53 gene mutations, and the follow-up of these patients should be provided multidisciplinary.

Keywords: BRCA-negative breast cancer; early-onset; Li-Fraumeni syndrome; molecular analysis; TP53 gene.

Copyright © 2020, Turkish Society for Radiation Oncology
Introduction

Approximately 5-10% of all breast cancer (BC) in women is hereditary BC. Hereditary breast-ovarian cancer (HBOC) syndrome and Li-Fraumeni syndrome (LFS) are the most common cause of inherited BC. HBOC arises from germline mutations in BRCA1 and BRCA2 genes that are responsible for approximately half of all cases with hereditary BC. TP53, PTEN and CDH1 genes are the other high-penetrance genes that play an important role in the genetic etiology of BC.[1]

TP53 gene is a tumor suppressor gene (also known as the guardian of the genome). The TP53 protein plays a major role in response to cell damage. Mutations in the TP53 gene lead to LFS that has a predisposition to a wide range of cancers, including BC and childhood cancers (sarcomas, leukemia, brain tumor, adrenocortical carcinoma). Women with LSF are at high risk for developing BC (up to 85% by age 60 years).[2] However, radiotherapy in BC patients with a mutation in TP53 gene could be a risk factor for developing a second primary cancer.[3]

The most common feature of inherited BC is an early-onset. Several studies conducted on a mutation screening in the TP53 gene in patients with BRCA negative BC, but there are differences in the threshold for age.[2,4,5] However, patients with LFS have a 25-fold increased risk of developing cancer under 50 years of age compared with the general population. For these reasons, we evaluated 100 patients with BRCA negative BC under 50 years of age concerning mutation in the TP53 gene.

In this study, we emphasize the importance of diagnosing LFS in patients with BRCA negative BC under 50 years of age for patient management, a mutation screening of asymptomatic kindred and for giving accurate and reliable genetic counseling.

Materials and Methods

Patients

The files of patients with BC who were tested for a mutation in BRCA genes between 2016 and 2017 years were reviewed in the Genetic Diagnostic Center. One hundred patients with BRCA negative BC diagnosed at age 50 years or younger were selected regardless of family history. All patients underwent genetic counseling. It was decided to perform molecular tests in the TP53 gene.

Ethics committee approval was received for this study as a retrospective study and informed consent was obtained from all patients studied.

Isolation of Genomic DNA

Genomic DNA was obtained from all patients by using the MagPurix Blood DNA Extraction Kit (Zinexts Life Science Corp., New Taipei City, TAIWAN) according to the manufacturer’s specifications.

Targeted Next-generation Sequencing (NGS)

NEXTflex® TP53 Amplicon Panel (Bioo Scientific Corp., Austin, TX, USA) was used for the enrichment of the coding regions and the intronic regions (up to the area covered by the kit) of TP53 gene. Targeted NGS was performed on Illumina MiSeq NGS System (Illumina Inc., San Diego, CA, USA) using MiSeq Reagent Kit v2 (500-cycles) (Catalog No: MS-102-2003. Illumina Inc., San Diego, CA, USA).

NGS Data Analysis

Firstly, ‘SEQ software’ (Genomize, İstanbul, TURKEY) was used for analyzing the raw data according to the reference genome of GRCh37. The minimum coverage-depth was 100X in all target regions. In addition, Integrative Genomics Viewer (IGV) software was used for evaluating the reads.[6,7]

Secondly, variants were detected based on minimum 5X coverage-depth per allele. Then, they were filtered by the following criteria:

1. Variants that had all submissions as Benign (B)/Likely Benign (LB) in ClinVar database were excluded, and
2. Variants that had allele frequency >5% in any population databases (1000Genomes, ExAC, ESP) were excluded, and
3. Variants that were in the coding and intronic regions were included.

Finally, filtered variants were interpreted based on ACMG Standards and Guidelines recommendations. [8] Ensembl, dbSNP, ClinVar, PubMed, International Agency for Research on Cancer (IARC) TP53 database,[9] LOVD (Leiden Open Variation Database), HGMD® Professional 2017.3 (Human Gene Mutation Database) and ExAC, ESP, 1000Genomes population databases, and in silico prediction tools [10-13] were used for interpreting variants.

Confirmation Analysis

The pathogenic variants revealed by the NGS analysis were confirmed by performing Sanger sequencing on
Discussion

BC is the most common malignancy among women worldwide. Although most cases of BC are sporadic, approximately 5-10% of BC cases have a hereditary BC. The majority of inherited BC in women arises from mutations in BRCA1 and BRCA2 genes. Other rare causes of hereditary BC include mutations in the high-penetrance genes, such as TP53, PTEN, CDH1, STK11, PALB2, and mismatch repair (MMR) genes.

LFS, also known as SBLA (Sarcoma, Breast, Leukemia and Adrenal Gland) cancer syndrome, is a cancer predisposition disease with an autosomal dominant inheritance. LFS occurs at an early age. LFS arises from a mutation in the \textit{TP53} gene. \textit{TP53} gene is activated when DNA is damaged. Cell cycle progression is delayed, and DNA is repaired. If \textit{TP53} protein is not activated by mutations, cells with damaged DNA can survive and proliferate to malignant transformation. More than 300 germline variants have been reported in the \textit{TP53} gene.[14] The majority of variants are missense variants. Most of them are detected in the DNA-binding region of the gene (exons 4 to 8).

Patients with \textit{TP53} gene mutation have a high risk of developing a second malignancy.[16] Women with LFS have a high risk of developing BC with an early age onset. The majority of BC in LFS occurs between 15 and 44 age of years.[17] The lifetime risk of cancer for women is estimated to be about 90% by 60 years of age.[18] Germline molecular testing (sequencing/MLPA) of \textit{TP53} gene is required for definitive diagnosis of LFS. There are several different criteria (such as classical LFS, Li-Fraumeni-like (LFL) syndrome, Chompret criteria) to determine patients for molecular testing in the \textit{TP53} gene. However, not all patients with \textit{TP53} gene mutation meet these clinical criteria.[15]

We identified two pathogenic and two likely pathogenic variants that were located in the DNA-binding region of the \textit{TP53} gene.
domain in this study (Fig. 1). All of them had been reported in IARC TP53 [9] and ClinVar databases. One of the pathogenic variants was found as c.638G>A (p.Arg213Gln) (Exon6) in patient 2 (Fig. 2). She was 38 years old and diagnosed at 38 years old. Her mother died at 60 years old because of spinal cord cancer. Her uncle (maternal) had prostate cancer and died at 65 years old. Her daughter was healthy (18 years old). The pathogenic variant was also found in her daughter. The second pathogenic variant was detected in patient 4. It was one of the hotspot mutations as c.817C>T(p.Arg273Cys) (Exon8) (Fig. 3). She was 42 years old. The first primary tumor was detected on the right breast at 32 years old, and the second primary tumor was occurred on the left breast at 42 years old. Her father diagnosed with gastric cancer at 64 years old and died 65 years old. One of the likely pathogenic variants was revealed in patient 1 as c.469G>T(p.Val157Phe) (Exon5) (Fig. 4). She was 24 years old and diagnosed at 24 years old. Her father died because of a brain tumor. She had three healthy sisters. Her uncle's (paternal) daughter had a BC. The second likely pathogenic variant was found in patient 3 as c.332T>C(p.Leu111Pro) (Exon4) (Fig. 5). She was 37 years old. She diagnosed with BC at 27 years old. Her father had a brain tumor and died at 40 years old. Her grandmother (paternal) died at 40 years old because of BC. We also identified a variant [c.1078G>A(p.Gly360Arg) (Exon10)] as VUS in patient 5, which was reported in ClinVar and IARC databases. She was 41 years old and diagnosed at 40 years old. She had not a family history.

There are several studies that reported the frequency of TP53 mutations in patients with BRCA negative early-onset BC. These studies were conducted in different ethnic groups with different age thresholds (Table 3). For example, Laloo et al. [19] carried out a mutation analysis of the TP53 gene by Sanger sequencing in 82 English BC patients diagnosed at ≤30 age of years. They identified four variants (4.9%; 4/82). In another study, Bougeard et al. [20] revealed four variants in 45 French BC patients (<33 years). The other study was performed by Ginsburg et al. [4] in 95 BC patients diagnosed at <30 age of years. They did not find any muta-

<table>
<thead>
<tr>
<th>Year</th>
<th>Study [ref]</th>
<th>Age at diagnosis</th>
<th>Case number</th>
<th>Variant identified</th>
<th>Methods</th>
<th>Ethnicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Laloo et al. [19]</td>
<td>≤30</td>
<td>82</td>
<td>4 (4.9%)</td>
<td>Sanger sequencing</td>
<td>English</td>
</tr>
<tr>
<td>2008</td>
<td>Bougeard et al. [20]</td>
<td><33</td>
<td>45</td>
<td>3 (0.7%)</td>
<td>Sanger sequencing</td>
<td>French</td>
</tr>
<tr>
<td>2009</td>
<td>Ginsburg et al. [4]</td>
<td><30</td>
<td>95</td>
<td>0</td>
<td>Sanger sequencing</td>
<td>Multi-ethnic</td>
</tr>
<tr>
<td>2009</td>
<td>Gonzalez et al. [21]</td>
<td><30</td>
<td>14</td>
<td>1 (7%)</td>
<td>Sanger sequencing</td>
<td>American</td>
</tr>
<tr>
<td>2010</td>
<td>Mouchawar et al. [17]</td>
<td>30-49</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Lee et al. [5]</td>
<td>≤35</td>
<td>83</td>
<td>5 (6%)</td>
<td>Sanger sequencing</td>
<td>Asian (multi-ethnic)</td>
</tr>
<tr>
<td>2012</td>
<td>Rashid et al. [22]</td>
<td>≤40</td>
<td>105</td>
<td>1 (1.5%)</td>
<td>DHPLC and Sanger sequencing</td>
<td>Pakistani</td>
</tr>
<tr>
<td>2013</td>
<td>Carraro et al. [23]</td>
<td>≤35</td>
<td>43</td>
<td>1 (2.3%)</td>
<td>Sanger sequencing</td>
<td>Brazilian</td>
</tr>
<tr>
<td>2015</td>
<td>Yang et al. [1]</td>
<td>≤30</td>
<td>20</td>
<td>2 (10%)</td>
<td>NGS</td>
<td>Chinese</td>
</tr>
<tr>
<td>2019</td>
<td>Gallardo-Alvarado et al. [24]</td>
<td>≤36</td>
<td>53</td>
<td>5 (9.4%)</td>
<td>NGS</td>
<td>Mexican</td>
</tr>
<tr>
<td>In this study</td>
<td>Özdemir et al.</td>
<td>24-29</td>
<td>5</td>
<td>2 (40%)</td>
<td>NGS and MLPA</td>
<td>Turkish</td>
</tr>
</tbody>
</table>

MLPA: Multiplex ligation-dependent probe amplification; DHPLC: Denaturing high-performance liquid chromatography; NGS: Next-generation sequencing
Fig. 2. IGV image (a) and electropherogram (b) of patient-2 with a pathogenic variant [TP53:NM_000546:c.638G>A(p.R213Q)(Exon6) Heterozygous]. The black arrows indicate a variant.

IGV: Integrative genomics viewer.
Fig. 3. IGV image (a) and electropherogram (b) of patient-4 with a pathogenic variant [TP53:NM_000546:c.817C>T(p.Arg273Cys) (Exon8) Heterozygous]. The black arrows indicate a variant. IGV: Integrative genomics viewer.
Fig. 4. IGV image (a) and electropherogram (b) of patient 1 with a likely pathogenic variant [TP53:NM_000546:c.469G>T(p. Val157Phe)(Exon5) Heterozygous]. The black arrows indicate a variant.

IGV: Integrative genomics viewer.
Fig. 5. IGV image (a) and electropherogram (b) of patient-3 with a likely pathogenic variant [TP53:NM_000546:c.332T>C(p.Leu111Pro) (Exon4) Heterozygous]. The black arrows indicate a variant. IGV: Integrative genomics viewer.
from the age of 18 years is recommended. Clinical breast examinations include breast self-examination, clinical examination and imaging. In general, monthly breast self-examination starting at 18 years of age is recommended. Clinical breast cancer risk-reducing bilateral mastectomy should be considered in women without cancer with TP53 mutation. Another option for risk-reducing mastectomy should be evaluated in BC patients with TP53 mutation because of the high contralateral BC risk. Moreover, the option for risk-reducing bilateral mastectomy should be considered in women without cancer with TP53 mutation. Therefore, patients should be informed about the risks of malignancy associated with radiotherapy. Risk-reducing mastectomy should be evaluated in BC patients with TP53 mutation because of the high contralateral BC risk. Moreover, the option for risk-reducing bilateral mastectomy should be considered in women without cancer with TP53 mutation.

Recommendations for other cancer risks include comprehensive physical examinations every 6-12 months, colonoscopy and upper endoscopy starting at 25 years of age. Dermatological examination especially for melanoma annually starting at 18 years of age. Whole-body MRI, especially for sarcomas, is recommended once a year.

Brain MRI is recommended once a year for brain tumors (can be performed as part of whole-body MRI or as a separate examination).

Conclusion

In conclusion, TP53 gene mutation analyses should be performed in BRCA-negative BC patients under 50 years of age although differences in the threshold for age because there is an increased lifetime risk for various cancers in LFS. TP53 gene mutation analysis can be performed as a single test or as a part of a multigene panel using NGS because NGS technology provides simultaneous analysis of multiple genes in a single test at a comparable cost to Sanger sequencing.

Brain MRI is recommended once a year for brain tumors (can be performed as part of whole-body MRI or as a separate examination).

Conflict of Interest: The authors have no conflicts of interest to declare.

Ethics Committee Approval: Ethics committee approval was received for this study as a retrospective study.

Financial Support: The authors declared that this study has received no financial support.

References

